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Table 1. Relative peak height and rank of phase- 
invariant translation-function solutions for fragments 

of varying sizes 

Phase-invariant translation-function analysis of isoleucinomycin 
using triples, positive quartets, negative quartets and a combination 
of both positive and negative quartets. Column one notes the 
number of atoms out of 84 that describe the relative size of the 
molecular fragment. The columns labeled rank give the position 
of the solution vector in the magnitude-sorted peak list and ratio 
gives the relative size of the solution vector as compared to the 
largest spurious peak. 

Positive and 
Positive Negative negative 

Triples quartets quartets quartets 
N/84 Rank Ratio Rank Ratio Rank Ratio Rank Ratio 

42 1 1.55 1 1.49 1 1.18 1 1.84 
21 1 1.45 1 1.06 11 0.84 1 1.41 
15 6 0.93 25 0.68 16 0.63 2 0.91 
10 25 0.69 46 0.54 29 0.63 12 0.71 

and relative size of the solution vector tends to 
decrease as the fragment becomes smaller, but the 
patterns of spurious peaks produced by the triples 
and negative quartets, or the positive and negative 
quartets, do not appear to be similar. As a con- 
sequence, the maps produced by these syntheses may 
be added, and the magnitude of the solution vector 
will be enhanced as the spurious peaks do not rein- 
force one another. This may be seen in Table 1 by 
inspecting the improvement in the peak rank and 
intensity ratio shown by the joint positive- and nega- 
tive-quartet analysis as compared to the results pro- 
duced by the positive and negative quartets separ- 
ately. 

The computational efficiency of the FFT algorithm 
as compared to the traditional methods of phase- 
invariant evaluation over the grid of the cell is 
impressive. The three-dimensional analysis for the 
structure which is presented in Table 1 required less 
than 10 min on a VAX 8600 computer system. The 
traditional method would require 2 or 3 d, a time 
saving on the order of 500-fold. 

Research supported in part by NIH grant 
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Abstract 

Lattice sites which have a proper or improper sub- 
group of 222 as the site group may exhibit an anhar- 
monic twisted local potential. The generalized 
Debye-Waller factor for atoms occupying such sites 

is derived. If the twist axis is fixed by symmetry 
considerations the approximation used needs, in 
addition to three harmonic parameters, one anhar- 
monicity parameter, essentially the local pitch. In the 
most general case with no symmetry restrictions three 
Eulerian angles are needed in addition to the pitch. 

0108-7673/92/020174-07503.00 © 1992 International Union of Crystallography 
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I. Introduction 

In 1907 Einstein published a seminal paper on 
Planck's theory of radiation and on the theory of 
specific heat. This paper contains what we now are 
accustomed to call the independent-particle or har- 
monic-oscillator model of solids: a crystal is imagined 
as being composed of uncoupled, three-dimensional, 
anisotropic oscillators which have a positive-definite 
Gaussian density-distribution function p(r). Planck's 
radiation formula is used for the extrapolation of 
specific heats to low temperatures, i.e. into the regime 
where the Boltzmann approximation must be 
replaced by quantum statistics. 

The Fourier transform of Einstein's density p(r) is 
the well known Debye-Waller factor (DWF). The 
improvement in the accuracy of Bragg diffraction data 
and the investigation of crystals containing atoms 
with large thermal amplitudes, e.g. ionic conductors 
and molecular crystals with weak bonds, have called 
for a generalization of the old concept of a harmonic 
DWF. This generalization was made along three 
major lines: by the introduction of anharmonic poten- 
tials (Willis & Pryor, 1975), by the Gram-Charlier 
(Johnson & Levy, 1974) and the Edgeworth (Johnson, 
1969) series approximations, respectively. 

Anharmonic potentials VANH(r) used in a 
Boltzmann factor exp [-/3 VANH(r)] have the intrinsic 
property of making the density distribution auto- 
matically positive-definite. The parameters in 
VANH(r) can be directly compared with atom-atom 
potentials. The potential VANH(r) is usually written 
in terms of symmetry-adapted homogeneous poly- 
nomials. The Fourier transform of PANH(r) cannot be 
given in a closed algebraic form. For weak anhar- 
monic contributions, series expansions are possible 
and they give results which make physical sense if 
done properly. One of the conditions to be met is, 
for instance, that the potential must be convex in the 
limit of large ]rl, i.e. the highest term in VANH(r ) must 
be even since otherwise the particle cannot be kept 
in a finite region of space by the potential. Strongly 
anharmonic potentials, for instance the double-well 
potential V ( x )  = - a x 2 +  bx 4, with a > 0, b > 0, can 
only be Fourier transformed by numerical pro- 
cedures. 

In the Gram-Charlier approximation a harmonic 
DWF is multiplied by a series of symmetry-adapted 
homogeneous polynomials in the components h, k, ! 
of the scattering vector H, whereas in the Edgeworth 
series-expansion approximation one replaces the 
Gaussian exponent of the DWF by a general series 
of homogeneous polynomials. The Gram-Charlier 
and Edgeworth methods are in other words approxi- 
mations in reciprocal space. They can both be easily 
incorporated into the usual structure-factor formal- 
ism, at least in principle. In both cases however the 
physically relevant thermal distribution density is not 

necessarily positive-definite and the interpretation of 
the parameters resulting from refinements, for 
example derivatives of atom-atom potentials, is at 
least nontrivial (Johnson & Levy, 1974). It has to be 
pointed out that free series expansions, i.e. expansions 
which are not based on a thermodynamic model, 
conceal the nonlinear constraints which exist among 
the tensor expansion coefficients: the single non- 
harmonic term in the potential V ( x )  = x2+ ~/X 4 gives 
rise to an infinite number of terms in a Gram-Charlier 
or Edgeworth expansion which of course all depend 
on y. Analogous difficulties occurring in the analysis 
of orientational disorder (Prandl, 1981) and the Boltz- 
mannian way of avoiding them have been discussed 
earlier (Vogt & Prandl, 1983). 

We have recently investigated (Prandl & Dunstet- 
ter, 1992) the strong rotation-translation coupling 
found in solid oxygen (Dunstetter, 1988; Dunstetter 
& Delapalme, 1989) by a thermodynamic model. In 
this investigation, potentials having a twist turned out 
to be essential. The simplest case of a twisted poten- 
tial, the double-helix case, and its corresponding gen- 
eralized Debye-Waller factor (GDWF) is supposed 
to occur quite often in crystals, and it is this case 
which is dealt with in the present communication. 
We use, in contrast to a 'free' Cartesian tensor series 
for V(r), a twisted potential, an approximation which 
is conceptually very close to an anisotropic harmonic 
potential and which at the same time is directly adap- 
ted to the additional symmetry of a double helix. The 
twisted potential contains only one parameter for a 
helix direction constrained by symmetry and four 
parameters for an unrestricted helix direction in addi- 
tion to the usual harmonic force constants. 

The paper is organized in the following way. After 
the short §II on notation we introduce in §III the 
twisted potential Vk(r) in terms of unit representa- 
tions of the point group 222. § IV describes the Fourier 
transform of the relevant p(r). The resulting GDWF 
is discussed in §V. The case of several symmetry- 
related helix axes, described by their local wave vec- 
tors, is treated in §VI. Possible applications are sum- 
marized in §VII. 

p(r), p(Q) 

V(r), Vo(r) 

Vk(r) 

k ,k  

II. Notations and definitions 

the density, the Fourier trans- 
formed densi ty=the general- 
ized Debye-Waller factor 
(GDWF) 
the potential in general, a har- 
monic potential 
the potential in the core region 
of a double helix with wave 
vector k 
the wave vector, the length of 
the wave vector of the helix 
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A , B , C  

M o - M ( ( / ) = O )  

M(@) 

Q = 2rrH 
Q = ( q  cos a, 

q sin a, q3) 
kB 
T 
/3= 1/(kBT) 
Z(O), Z (Q)  
E 

R(O) 
u , v  
I~(z) 

~m(Z)=e-ZI~(z) 
g, 1~ 
Re(a),  R~(a) 

R(m) 

S(,.), Sire) 

a'(m) 

the wavelength = the pitch of 
the helix 
force constants in V(r), Vo(r), 
Vk(r) 
diagonal matrix with elements 
A , B , C  
Mo after a rotation by angle @ 
about the axis z 
scattering vector 
Q in a cylindrical coordinate 
system 
Boltzmann's constant 
temperature 

the partition function; cf. (2) 
the exponent of the Boltzmann 
factor exp ( -  E) 
a rotation matrix 
defined in (24), (25) 
modified Bessel functions; 
defined and tabulated in, for 
example, Abramowitz & 
Stegun (1966) 
normalized Bessel functions 
metric tensors: (39), (40) 
rotation matrices with rotation 
axes y, z: (43) 
equivalent atomic sites; m = 
1 , 2 , . . . , M  
matrices of crystallographic 
rotations in an orthonormal 
and a lattice-adapted basis sys- 
tem, respectively 
nonprimitive translation of a 
space-group element. 

III. The single-particle potential with curvature* 

The aim of this paper is, firstly, to derive a potential 
V(r) which obeys locally the noncrystallographic 
symmetry at the core of a double helix and, secondly, 
to obtain the generalized Debye-Waller factor 
(GDWF),  i.e. the Fourier transform of the thermal 
probability density in an algebraic form. 

Let the thermal (number) density of an atom mov- 
ing in V(r) be given in the Boltzmann approximation 
by 

p(r) = Z -1 exp [-/3 V(r)] (1) 

where Z is the partition function. Defining 

Z ( Q ) = ~ e x p [ - f l V ( r ) + i Q r ] d z ,  (2) 

one finds the GDWF 

p ( Q ) = Z ( Q ) / Z ( O )  (3) 

because Z(0) = Z. 

* In §§III, IV and V an orthonormal system Z of basis vectors 
e, is used throughout. The wave vector k of the helix is always 
parallel to e 3. 

The single-particle potential Vk(r) along the core 
of a double helix is chosen as a simple and natural 
extension of the triaxial harmonic potential Vo(r) 

Vo(r) =½(Ax 2 + By 2 + Cz 2) (4) 

where the A, B, C are, as usual, force constants. 
Vo(r) = constant represents a triaxial ellipsoid with 
the three principal axes/xl,/z2,/-~3 given by 

( ~ ,  tz2, tz3) = constant 

x[(2 /A)I /2 , (2 /B) ' /2 , (2 /C) ' /2] .  (5) 

To adapt this ellipsoid to the noncrystallographic 
symmetry of the helix we apply to (4) a twist which 
allows the main axes ~(z) and q(z)  in planes with 
z = constant to follow the pitch of the helix whereas 
the third axis of this twisted potential Vk(r) remains 
invariably parallel to z, the axis of the helix. 
Mathematically we arrive at Vk(r) in the following 
way: 

where 

and 

Vk(r) = ½rM(@)r (6) 

M(@) = RM(O)R-' (7) 

A 0 0 1 
M(O)= 0 B 0 

0 0 C 

R =  S C 
0 0 

(8) 

(9) 

c = c o s @ ;  s = s i n @  (10);(11) 

@ = kz+ @o (12) 

is the angle by which, at different levels of z, the local 
axes lj(z), q(z)  have been rotated with respect to their 
orientation at z = 0. The latter, the original orienta- 
tion, is allowed to have an arbitrary offset angle @o 
with respect to the x direction. So in summary we 
can imagine that for fixed values of z the restoring 
forces towards the z axis are linear, i.e. 'harmonic '  
in the local deviation ~, 7/ with, however, force con- 
stants which depend on the particular value of z. 
Taken as a three-dimensional object, Vk(r) is anhar- 
monic with the single anharmonicity parameter k = 
2rr/A. The offset @0 enters only into the orientation 
of Vk(r) with respect to the x axis. 

We may develop Vk(r) into a series of Cartesian 
tensor contributions 

V~(r) = v ~ ( r )  + v~)(i  -) + v~*~(r) + . . .  

M~)XrXs + (3) = M rst X r X s X t  

+ M~aLxrxsx, x., + O(xS), (13) 
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where the M are tensor components and the Xr are 
the components of r. 

In (13) the summation convention is assumed to 
be valid. Introducing 

D = ( A - B ) / 2  (14) 

and setting @o = 0, one finds the nonzero tensor com- 
ponents up to and including fourth-order terms: 

M~ 2) = a/2; Jr.'At(2)22 ~--~ B/2; (15); (16) 

M(2) C/2 AAr(3) = 2 k D  (17); (18) 
3 3  = a v a  1 2 3  

M(4) , a'(4) _k2D. (19) 
1 1 3 3  = - - I V I  2 2 3 3  ~--- 

From (13)-(19) we draw two conclusions. Firstly, 
a single nonzero anharmonicity parameter gives rise 
to Cartesian tensors up to arbitrary order. Secondly, 
the direction of the helix axis shows up only in the 
fourth- and higher-order tensors. 

The potential Vk(r) given in (6)-(12) has the ortho- 
rhombic point symmetry 222. In the special case 
@o = 0 chosen in (13)-(19), the twofold axes coincide 
with the x, y and z axes, respectively. An inspection 
of the character tables for the point group 222 reveals 
that the V[m)(r) are unit irreducible representations. 
In other words, the twisted potential Vk(r) is built up 
from symmetry-adapted functions of the FI rep- 
resentation of 222. For C =0,  the restoring forces 
towards z = 0 vanish: it is only in this case that Vk(r) 
exhibits true helical symmetry. In a crystal twisted 
potentials may occur whenever the site group P per- 
mits a twist. This is, to be specific, true for all sites 
for which P is a proper or improper subgroup of 222. 
If P = 2 2 2 ,  then k must be parallel to one of the 
twofold axes. For P = 2 the wave vector k may be 
either parallel or perpendicular to the axis. 

IV. The Fourier transform 
The exponent E occurring in the Boltzmann factor 
of (2) can be written explicitly as 

E = -½trR(z)M(O)a-l(z)r+ iQr. (20) 

Introducing new transformed variables 

s(z) = R- l (z ) r  = (~, n,~) T (21) 

where (~, r/, st) T is a column vector, (20) is simplified 
to 

E : -½ts(z)M(0)s(z)  + iQR(z)s(z)  

= [ - tA~ :2 /2+  i~q cos (kz+ @0- a)]  

+[-tB~72/2-irlq sin (kz+ @o- a)]  

+[-tC~2/2+ i~q3]. (22) 

The Jacobi determinant of the transformation (21) 
is +1. The integration to give Z(Q)  with the exponent 
E [(22)] can then be performed in two steps: one 
first determines the integrals of the terms containing 

the variables ~: and r/, respectively, using (A1) given 
in the Appendix. The remaining terms depending on 
z are then transformed into a series of modified Bessel 
functions I,,, ( . . .  ) by the application of the generating 
function (A2). This series can be integrated term by 
term and one obtains 

where 

Z(Q)=(27r/t)s/2(ABC) -'/2 exp ( - u )  

oo  

x 2 ( - 1 ) "  e x p [ 2 i m ( @ o - a ) ]  
m = - - o o  

x exp [ - (  q3 -F 2mk)2/(ZtC)]Im (V) (23) 

U=[qZ/(4t)](1/A+ 1/B) (24) 

V=[q2/(4 t )] (1 /A-1/B) .  (25) 

[The parameter V should not be confused with the 
potential: potentials will always be written in the form 
V(r), i.e. with their arguments explicitly given.] 

The GDWF (3) is finally, in a condensed form, 

p(Q)=exp(-U)  ~ (-1)"exp[2im(@o-a)] 
m = - o o  

×exp[-(q3+2mk)2/(2flC)]Ir,,(V). (26) 

For actual calculations it is more convenient to separ- 
ate the real and imaginary parts: 

p(Q) = exp [ - ( U -  cr V )]exp[-q~/(ZflC)] 

{ × ~0(Iwl+ E (-1)"o"~lm(lV]) 
m = l  

× exp [ - 2 k  2 m2/(tiC) ] 

with 

and 

× [cos 2m(@o-  a)  cosh (2mkq3)/(tiC) 

+ i sin 2m(@o-  a)  sinh (2mkq3)/(flC)]~ 
J 

(27) 

+1 for V > 0  
or= -1  for V < 0  (28) 

U - t r  V =!  q2/(2B) f for V > 0  (29) 
qZ/(2A) for V < 0 .  

The specific form of (27) has been chosen for the 
purpose of numerical applications: the functions 

A 
- - Z  l , ,(z)=e l,,(z), z>_O, (30) 

are bounded for positive arguments (Abramowitz & 
Stegun, 1966): 

A 

I,,,(z) < - 1, m>-O. (31) 

They can be calculated easily by efficient algorithms 
(Press, Flannery, Teukolsky & Vetterling, 1986). 
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V. Discussion and special cases 

For a discussion of special values for the parameters 
A, B, C, k and Oo we will use (26) rather than (27)- 
(29). In order to let the twofold axes of the point 
group 222 coincide with the x, y and z directions, we 
will set Oo = 0 unless stated otherwise. 

(1) A -+oo 

This is the limiting case of no torsion at all. Since 
k = 0 all the terms in (26) can be summed algebraically 
by (A2). With the additional choice Oo = 0  which 
corresponds to a rotation of Vk(r) about the z axis 
we arrive at 

p(Q) =exp  [- (q2/A + q2/ B + q2/ C)] (32) 

= exp [ - ( U - o r  V)] 

x Io(IVl)÷2 E (-1)mo~I,.([Vl)cos2mre 
m = l  

(32a) 

which is, as expected, the harmonic DWF corres- 
ponding to the harmonic potential Vo(r) given in (4). 

(3.3) Q = q (cos a, sin a, 0). We find from (27) 

p(Q) = exp [ - (  U - o" I V])] 

x ( V ) + 2  Z (--1)m~ml~(lV) 
m = l  

x exp [-2k2m2/(~C)] cos 2 m ( O o -  re)}. 

(38) 

It was shown earlier that, for k = 0 and Oo = 0, (38) 
is the harmonic DWF (32). When one compares (32a) 
and (38), the effect of a nonvanishing torsion becomes 
evident immediately: the additional damping factor 
exp(-2k2m2/f lC)  in (38) appreciably reduces 
higher-order anisotropic contributions, which are 
present in (32a). The principal axes of anisotropy of 
p(Q) in (32) and (38), and of Ip(Q)l 2, however, 
coincide in the plane (q~, q2, 0) chosen. For q3 # 0 
the additional imaginary contributions present in the 
general expression (27) of p(Q) provide for a higher 
anisotropy in the planes (q~, q2 or q3=constant)  
without, however, a change of the direction of the 
anisotropy. 

(2) A =  B 

Isotropy in the xy plane. Since V = 0 [(25)] in this 
case, the only nonzero term in the sum of (26) is 

Io(0) = 1 and 

p(Q)=exp{-[ (q2+q2) /A+q2/C]} .  (33) 

It is again clear that any anharmonic effects must 
vanish since Vk(r) is a rotationally symmetric har- 
monic potential [compare (6)-(11)]. 

(3) The general case: A # B # C # 0; k # 0 

(3.1) Symmetry. The point group 222 transforms 
p(r) as well as p(Q) into itself. The inversion center 
and the mirror planes perpendicular to x, y and z in 
the corresponding Laue group mmm take p(Q) into 
p*(Q): 

p ( - Q )  = p*(Q) (34) 

P(q, ,  q2, - - q 3 )  = P(q,, --q2, q3) = P(--q,, q2, q3) 

=P(--q,,--q2,--q3). (35) 

Equations (34) and (35) are of course in agreement 
with Friedel's rule. Reversal of k, which is equivalent 
to a change from a right-handed (k = +kz) to a left- 
handed helix, has the same effect: 

p_k(Q) = p*k (Q). (36) 

(3.2) Q = (0, o, q 3 ) -  In this case the sums in (26) 
or (27) are reduced to one term I0(0)= 1, and the 
GDWF becomes Gaussian: 

p(Q) = exp (_q2/C).  (37) 

VI. Several equivalent helical sites* 

All the calculations of §§III to V refer to an ortho- 
normal basis system 27 specified by the basis vectors 
ei, i = 1, 2, 3. It has been pointed out by Johnson & 
Levy (1974) that the parameters relevant for thermal 
disorder have an obvious and immediate physical 
interpretation only in an orthonormal system. In the 
present case these are the quantities A, B, C with 
dimension [erg c m  - 2  = dyn cm -~ = mN m - ' ]  and the 
wave vector k with the dimension [A-l] .  

In a crystal having M equivalent helical sites 
R~,,), m = 1, 2 , . . . ,  M, one should accordingly intro- 
duce M transformed .orthonormal systems Ztr,~, 
calculate the cylindrical coordinates of Q in these 
coordinate systems and use (27). We prefer, as is 
usual in the treatment of the thermal motion (Johnson 
& Levy, 1974), to apply the inverse transformations 
to the scattering vector Q. In this way M transformed 
vectors Q~,,) are generated which all have to be used 
in the standard system 27. 

Let ai, a* (i = 1, 2, 3) be the basis and the reciprocal 
basis, respectively, of the crystal. The orientation of 
the ei and the a~ bases with respect to each other is 
completely free. There are, however, a few obvious 
choices (Johnson & Levy, 1974) and one natural i.e. 
unique choice (Patterson, 1952) which will not be 
dealt with here. Of importance in our case is the 
relative orientation which will be described by two 

* In this section bold-face symbols, e.g. H, refer to the orthonor- 
mal basis system ~ described in the text. Primed bold-face symbols, 
e.g. H', refer to the lattice-adapted bases a, and a*. 
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metric tensors g and 1"~ 

gik=(ai'ak) (39) 

and 

S2,k = (e," ak). (40) 

The transposed tensors will be written gr  and I I~  
The g, f l  and their inverses are connected by 

g = f l r l )  (41) 

g-~ = a-~(~7-)  -~ . (42) 

The set of sites R(,,,) is generated from R(1) by the 
space-group elements g(,,) = {S(,,,) x(,,)}. Let T be the 
rotation which transforms £ into 2(~): 

T = Rz(q~ )Ry( 4')Rz(~2), (43) 

where Ry(. . .)  and R~( . . .  ) are rotations with axes 
along the y and z directions of X, respectively. Then 
the rotation taking Z to Z(,,) is 

T(,~ ) = S( m)T. (44) 

Following the recipe given above we apply the inverse 
transformation to Q to arrive at 

Q(m) = T - I S - 1  (m)Q. (45) 

All quantities in (45) are written in the orthonormal 
system Z. In actual calculations it is, however, more 
convenient to use lattice-adapted quantities S~,,,) and 
Q' which are connected with the S(m) and Q by 

Stm~ = I~S~,,~I) -t (46) 

Q = ( l~ r ) - lQ  ' . (47) 

From (45)-(47) we find finally in the system 

Q(,,) = T-~IIS~L~)g-~Q '. (48) 

The partial structure factor for the M atoms having 
a helical GDWF is given by 

F( hkl) = Y. f (Q)p[Q(, , )]  exp [27riH'R'(m)] (49) 

where f (Q)  is the X-ray form factor or the neutron 
scattering length, respectively, R~,,,) refers to the basis 
ai and p(Q(,,)) is given by (27) with 

q(m)3 = Q(,.)3 (50) 

q(m) = [ Q~,,)I + Q~,,,)2] 1/2 (51) 

and 

cos a(, ,)= Q(,,,)ffq(,,). (52) 

The new physical parameters which enter into the 
description of the system as soon as M > 1 are the 
three Eulerian angles ~p~, 4' and ~02. 

supporting a twisted potential Vk(r). The local nature 
of the present formalism is enforced by requiring 
nonzero force constants A, B and C. Global helices 
are therefore not necessary for the GDWF to be 
applicable. Keeping this in mind, p(Q) of (26) can 
be interpreted anew: it describes, in the lowest 
approximation, the thermodynamic effects of a local 
torsion with, now, a wave vector k, the length of 
which is determined by the local twist. The direction 
of k is restricted if the site symmetry is 2 or 222. No 
restrictions occur for the general position in any space 
group which always has the site group 1. We empha- 
size in particular the importance of the sites on a 
screw axis. 

Twisted internal surfaces in crystallographic 
spaces, i.e. in spaces exhibiting space-group sym- 
metry, have been discussed recently from the 
geometrical (Fischer & Koch, 1989; Koch & Fischer, 
1989) and from the chemical (Anderson, Hyde &von 
Schnering, 1984; von Schering & Nesper, 1987) points 
of view: they may be helpful for the identification of 
sites with an intrinsically strong twist. In passing, a 
few sites having a twisted environment are given 
explicitly: 

sites at the core of a double helix; 
centers of orthorhombic bisphenoids, sites which 

are quite frequent in minerals and inorganic com- 
pounds; 

sites linking the twisted paddles in polyphenyls. 
There remains the question as to which diffraction 

method is best adapted for an analysis of this kind. 
In recent years single-crystal diffraction data of high 
accuracy have been determined from X-ray measure- 
ments taken at synchrotron-radiation sources. It will 
certainly be an interesting task to unravel the elec- 
tronic and thermal effects which both contribute to 
the twisted electron density. The unique assignment 
of twisted densities to a thermal origin is, however, 
expected to be more feasible from a careful analysis 
of high-accuracy neutron diffraction data. In the latter 
case, both the availability of data with high momen- 
tum transfer and the independence of the scattering 
length from Q will contribute to improve the analysis. 
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ject No. 311-PRA-91-CA). 

APPENDIX 

VII. Concluding remarks 

So far we have used the term 'double-helix environ- 
ment' as a short-hand notation for local environments 

For convenience we quote here two formulae which 
have been used several times in this paper: the Fourier 
transform of a Gaussian [(A 1); Gradshteyn & Rhyzik 
(1965)] and the generating function for the modified 
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Bessel functions I,,(z) [(A2); Abramowitz & Stegun 
(1966)]: 

J exp (-qZx2) exp [ip(x + h)] dx 

=(zr~/Z/q) exp[-p2/(4q2)]cosph (A1) 

exp (zcos0) = ~  exp (imO)I,.(z). (A2) 
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Abstract 

The accuracy in protein structure analysis based on 
Laue X-ray diffraction has been investigated for the 
example of two orthorhombic structures of bovine 
pancreatic trypsin (BPT). The precision in the Laue 
structure factors and the contrast in electron-density 
maps were used as criteria. A comparison with the 
results of previous analyses based on conventional 
crystal rotation methods showed that high resolution 
around 1.4/~, may be reached with both monochro- 
matic and polychromatic techniques. Electron- 
density maps exhibited significantly lower contrast 
when calculated on the basis of Laue structure ampli- 
tudes, due to inefficient exploration of reciprocal 
space at low resolution by the Laue method even in 
the case of a broad bandwidth and inclusion of 
exposures from several different crystal orientations. 
Laue data were recorded on photographic film and 
processed using the program LAUEMAD [Bartunik 
& Borchert (1989). Acta Cryst. A45, 718-726]. The 
empirically derived wavelength scaling factors based 
on a comparison of equivalent reflection intensities 
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were in good agreement with theoretical estimates 
over a broad wavelength range. One BPT structure 
was refined on the basis of Laue structure amplitudes 
(current R factor 24% at 1.8 A resolution). 

Introduction 

Laue diffraction techniques using synchrotron radi- 
ation permit the recording of a large number of simul- 
taneously excited reflections during short exposure 
times. This provides a means for investigating enzyme 
kinetics and protein dynamics based on crystal struc- 
ture analysis of transient states (Moffat, Szebenyi & 
Bilderback, 1984; Helliwell, 1985; Hajdu, Acharya, 
Stuart, Barfor6 & 3ohnson, 19~; l-tajdu & Johnson, 
1990). A first application of this method to structural 
analysis of an enzyme reaction intermediate with a 
lifetime of several minutes has recently been reported 
(Schlichting, Rapp, John, Wittinghofer, Pai & Goody, 
1989). Even much shorter time scales are within reach. 
In the case of well diffracting crystals of medium-size 
protein structures such as trypsin, lysozyme or 
myoglobin, exposure times in the range of 1-10 ms 
suffice to obtain Laue diffraction patterns extending 
to atomic resolution at presently operational storage 
rings (e.g. Moffat, 1989; Bartunik, 1991). In addition 
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